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An approach to the description of mixing of the relaxing gases behind an array 
of small-scale nozzles is proposed, on the basis of a spectral model of turbu- 
lence and the density function of the probability distribution for the concen- 
tration. 

In any practical applications, it is necessary to calculate the flow behind the plane 
of an array consisting of a large number of small-scale nozzles (Fig. I). Such arrays are 
usually employed for the rapid mixing of various gases and the preparation of a homogeneous 
medium with specified characteristics. As a rule, because of the velocity difference of the 
adjacent jets, the flow behind the plane of the nozzle array is turbulent and may be de- 
scribed by a system of three-dimensional dynamic Reynolds equations [i]. Solving such a 
system of equations using even the simplest model of turbulence is very complex. The prob- 
blem becomes even more complex on taking account of nonequilibrium excitation of internal 
degrees of freedom of the molecule, with subsequent relaxation. This must be taken into 
account in considering flow with large gradients of the gas-dynamic parameters, for example, 
in gas-dynamic [2] and chemical [3] lasers, including gas-dynamic lasers with mixing (GDLM) 
[4]. 

In analyzing GDLM, it is usual to make a series of assumptions leading to a simple 
model of mixing. 

The model of "instantaneous" mixing, based on integral relations expressing the conver- 
sion of mass, momentum, and energy, permits quantitative estimation of the gas-dynamic param- 
eters of mixing at the molecular level of the flow and, in some cases (when the characteris- 
tic time of mass transfer is less than the relaxation time), satisfactory description of the 
distribution of laser characteristics of the medium (amplification factor, specific energy 
reserve) downstream from the nozzle array [5]. However, in such an integral approach, the 
dynamics of flow transition from the initial to the final state is unknown (even through 
these states are completely determined). Therefore, in those cases where the gas-dynamic 
parameters of the final state differ significantly from the mean parameters at the plane of 
the nozzle array, the model of "instantaneous" mixing is unsatisfactory, since it is neces- 
sary to take account of the change in mean quantities because of breakdown of their pulsa- 
tional fields in the mixing process. 

Attempts to take account of mixing dynamics on the basis of the model of "open current 
tubes" were made in [6-8]. In this model, the transverse mass transfer is taken phenomeno- 
logically into account, as well as the momentum and energy transfer, by introducing two ini- 
tially unknown functions Gi(x), which are the flow rates of the pure components in the mixing 
layer. Determining the form of these functions on the basis of any additional information 
is the basic problem in using the given model. As shown in [8], on specifying Gi(x) in the 
form of linear (or other simple) functions of the longitudinal coordinate x, when the number 
of arbitrary parameters is a minimum, the quantitative agreement of the results of calculat- 
ing the laser characteristic with the experimental data is not satisfactory. 

The basic deficiency of these approaches to the calculation of laser characteristics of 
supersonic relaxing jets is that they take no account of the delay in mixing to the molecular 
level due to the complex evolution of the initially large moles of pure component in the 
turbulent velocity field and the finite rate of molecular diffusion. This delay ofmixing 
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Fig. i. Mixing array of small-scale nozzles. 

Fig. 2. Calculation of mean velocity u, m/sec (a), pressure 
P, Pa (b), and temperature T, K (c) behind the plane of the 
nozzle array in the mixing of nonrelaxing jets N2-N=: i) by 
the present model with ~ = x/L2, ~ = i - x/L2; 2, 3) by the 
model of [8] with L2/L l = I and 2.5, respectively (L= = 40 
cm); 4) by the model of "instantaneous" mixing. 

in flows with vibrational and chemical disequilibrium was taken into account in [9-ii], for 
example, on the basis of the model of "nonmixing" and "damping" of the reaction rate con- 
stants, by multiplying them by a "nonmixing" function which depends on the mean square pul- 
sations of the concentration. 

In the present work, an approach to calculating mixing and relaxation processes behind 
an array of small-scale nozzles is developed, using the density function of the probability 
distribution (DFPD) of the scalar field and the equations of turbulent mixing for the distri- 
bution function of the intensity of velocity and concentration pulsations over the spectrum 
of length scales. 

With all the complexity of the turbulent-mixing process, it may be noted that the flow 
behind the plane of the nozzle array is characterized by the presence of macromoles of the 
pure components and regions with a homogeneous composition in which the components are al- 
ready mixed to the molecular level. Introducing the functions Gi(x) describing the mass 
flow rates of the components mixed to the molecular level, the following obvious relation 
holds 

Gi(x)=~(x)GY, i = 1 ,  2, ( l )  

where Gi ~ is the total flow rate of the i-th component; ~ (x) is the proportion of components 
mixed to the molecular level. 

Writing one-dimensional steady Euler equations for each component of the medium, under 
the assumption that the transverse pressure gradient is zero, and introducing phenomenologi- 
cally, according to Eq. (I), the mass transfer between the components, the following initial 
system of dynamic equations is obtained 

1 dg~ _1 1 du~ + 1 dA~ ~ d ~ ;  (2) 
9i dx  dx  A i dx  1 - -  cp dx  

du~ d P  = 0; 
piui ~ + d---Z 

(3) 
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d H i +  ui dui 
dx dz 

p dx u dx A 
du dP 

Ou - -  -~ dx dx 

dH du de - - + u - - + - -  
dx dx dx 

Rp,T~ 

= O; 

dA 1 &p . 
c/x cp 

-- -- 9uQu; 

'~'. = o; 
2 

dx 

(4) 

(5) 

(6) 

(7) 

(8) 

where 

H =  
~vj (1 --  q$ G O 

R (~oT q- E~.jOjej); A i -  
P~ 1= 1 PiU~ 

A =  q~(l+SG)6 ~ 
pu 

Q,, = 1 dq~ [(Ua -- u) 8G + u , - -  u]; 5~ = O---~~ 
+ ~ co 

ej = gl ; ~o = 5 3 
exp ( O / T 3 ) -  1 ~ ~- -2-~-N+ SL" 

Quantities with no subscript i correspond to regions of the flow where the components are 
mixed to the molecular level. In the equation for the total enthalpy - Eq. (7) - in con- 
trast to the analogous equation of [6-8], there is an additional term of the form (d~/dx)- 
u'2(0)/2, refining the energy structure of the flow behind the plane of the nozzle array. 
The mean mass velocity at the onset of mixing is defined as 

u~+u~ ( 9 )  u(O) - l + 6 G  

The mean square velocity pulsations relative to the mean mass level may be written in the 
following form, taking account of Eq. (9) 

(u ~ _ d ) ~  
(lO) 

It follows from Eq. (i0) that, when 6 G ~ i, and with a sufficiently large velocity differ- 
ence of the flows at the array cross section, the energy of pulsations of the velocity field 
cannot be neglected, since it becomes comparable with the kinetic energy of the mean motion. 
Hence, the total enthalpy of the flow must include three terms: H, the mean specific enthal- 
py; u2/2, the kinetic energy of mean motion; u'2/2, the energy of turbulent pulsations of 

the velocity field. The function ~(x) = u'2(x)/u'2(0) introduced in Eq. (7) characterizes 
the intensity of the turbulent velocity field. After reducing to normal form and adding 

(2)-(8) may be written in the form 

-- sAP [[ dA~ + Sp + Sa ]; 

dul ~ ~,~u~ dP 
- -  �9 

dx P dx 

dT, =Ti [ .  i dP S$o] 
d~ ~P ~ ; 

kinetic equations, the system in Eq. 

dP 
dx 

du )~u dP 
_ _  _ _ _  + q ~ ;  

dx P dx 

dTdx = T [  I~P dPdx S~ --  Su --  S ,  ]; 

(ii) 

(lZ) 

(13) 

(14) 

(15) 
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where 

de----L-J = rf [ dej '1 + Q~j; 
dx \ dx ] ~1 

(m6 ) 2- '  {d4') 
de}O = ( 1 - - ~ )  -~-X/re; i =  1, 2; ] =  1 . . . . .  Nj ;  
dx 1 + mS~ 

Oej-= 1 d___~ 1 [(e~l) ej)~(1)m~)a_t - (e}2) ej)g}2)]; 

2 

S ,  = X  A~S(~) + A[S,  + S~ (1 + ~X) + S,]; 
i = l  

dx P = 
| Nj 

s T =   joj&-a-J . s , =  1 U  (oi e ,  . 
i=1 d~c ' ~ u  ~ 2 d x  ' 

Su _ Qu . ~J= ~o + X ~jOj dej , )~ RT 
f3?~u ie~ dT ~u ~ 

(16) 

(17) 

~(2) 
m =  ~(z) ; ~ =  gJ " 

exp (@/T) --1 ' 

i s  t h e  s e t  o f  i n d i c e s  o f  t h e  v i b r a t i o n a l  modes o f  t h e  m i x t u r e  in  e q u i l i b r i u m  w i t h  t h e  
t r a n s l a t i o n a l  t e m p e r a t u r e ;  ( d e j / d x ) r e  1 i s  t h e  r e l a x a t i o n a l  component o f  t h e  k i n e t i c  equa-  
t i o n s ,  in which the constants of V-V, V-T, and V-V' exchange from [12, 13] are employed. 

To compare the gas-dynamic model obtained in Eqs. (11)-(17) with the model of [8], the 
mixing of nonrelaxing jets of hot (T02 = 2000 K, P02 = 1.0 MPa) and cold (T01 = 300 K, Po~ = 
0.9 MPa) nitrogen is calculated, with the following parameters in the plane of the nozzle 
array: T l = 58.8 K, Pl = 3206 Pa, u I = 698 m/sec, T z = 292 K, P2 = 1036 Pa, u 2 = 1918 m/ 
sec. After calculating the shock-wave interaction and additional expansion of the jets by 
the method described in [7], the gas parameters are as follows: T I = 41.3 K, T z = 331 K, 
u I = 723 m/sec, u 2 = 1897 m/sec, PI = P2 = 898 Pa. 

The results of calculating the mean gas-dynamic parameters of the flow by the "instan- 
taneous"-mixing model [8] with two values of the ratio of the disappearance lengths of 
the cores of pure components L2/L I and the model in Eqs. (11)-(17) with linear dependences 
~(x) = x/L~, ~(x) = i -- x/L z are shown in Fig. 2. It is evident that, when L l = L2, the 
model of [8] is closest to the present model in describing the distribution of the mean 
velocity and pressure in the flow, but the mean temperature differs very significantly here. 
When L2/L l = 2.5, the difference in the mean-temperature distributions decreases, but at the 
same time becomes larger for the mean velocity and pressure. Thus, Eq. (7) and the propor- 
tion of mixed components in the form in Eq. (i) significantly influence the distribution of 
mean gas-dynamic characteristics of the flow, and the functions ~ (x) and ~(x) must be found 
on the basis of a more adequate model of turbulent mixing if they are to be satisfactorily 
described. 

In the initial section of the flow behind the plane of the mixing array (Fig. i), the 
turbulence is significantly nonequilibrium in type. Disequilibrium appears in the lack of 
development of the intensity spectra of the turbulent pulsations of velocity and concentra- 
tion with respect to the length scale and also in thepronounced deviation of the single- 
point distribution functions of the concentration [14] and velocity from Gaussian form; 
At the same time, second-order single-point models (of type k-e) describe mixing processes 
under the assumption of equilibrium of all the turbulence characteristics [15-17]. In addi- 
tion, these models bear no information on the proportion of the components mixed to the 
molecular level, which is an important characteristic for relaxational processes occurring 
as a result of the molecular collisions. Therefore, for the correct modeling of relaxation 
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Fig. 3. Comparison of amplification factor 
E, m-I, calculated by the present model 
(continuous curve) and experimental data 
[27] (a), and variation in ~0 and ~ along the 
longitudinal coordinate x, cm, behind the 
plane of a nozzle array (b); I) experiment. 

processes, the minimum possible level of description of turbulent mixing is the use of two- 
point moment characteristics of turbulence and single-point probability densities. Accord- 
ingly, it is important to consider two aspects in the interaction: the dynamics of the 
intensity distribution of the pulsational concentration field with respect to the spectrum 
of length scales and the dynamics of the concentration pulsations. The first aspect is de- 
termined by the turbulent small-scale motion of the gases being mixed; the second is asso- 
ciated with the action of molecular diffusion; they interact because the evolution of the 
intensity distribution of the concentration pulsations with respect to the length scale cre- 
ates variable boundary conditions for the molecular diffusion. In [18], equations were 
given for the spectral distributions Pt(r) and PtC(r) 

OP~(r)ot =2? ]/'r-~t (r)[ OP~(r)or + + Pt (r)]--k 

r [ ] 
+2[v+yIVr'Pt., (/)dr'] OzP'(r)or ~ q_ 4r OPt(r-------~)Or 4r z pt(r) ; 

0 

, (0 + Ot Or r 

.~.2[%qt_~i]/r-.~t(--~)dr,][O2Pe_~t!r) ~_ 2 OPt(r)  2 P~(r)], 
[ Or ~ r Or r z 

0 

(18) 

( 1 9 )  

where v ,  X are the mean kinematic viscosity and diffusion coefficient; y, ~ are constants 
determined from experiment. The system in Eqs. (18)-(19) describes the mixing of the com- 
ponents in an isotropic turbulent flow, in which turbulent motion is small-scale, while the 
medium is homogeneous on average and mixed to macromoles of the mixture. In fact, for arrays 
with a characteristic linear dimension L m ~ 10-I...1 m, individual-nozzle dimensions r 0 ~ 
10 -3 m, mean flow velocity U ~ 103 m/sec, and velocity difference of adjacent jets lul ~ - 
u2~ ~ 102-103 m/sec 

r o ~ Lm, T ~ Tmi (2o) 

where T m = Lm/U ~ i0-4-i0 -3 sec; �9 = r0/lul ~ - u=~ ~ i0-6-i0 -~ sec. 

The Reynolds number of the flow overall when ~ ~ i0-3-i0 -~ m=/sec is large (Re = ULm/ 
~ 10s-107); therefore, it is natural to suppose that, in sufficiently small regions of 

the flow with a dimension of order r 0, the hypothesis of locally isotropic turbulence may 
be adopted with good approximation [19] and, in describing such flow, it is natural to use 
the apparatus developed in the theory of isotropic turbulence. In some cases, the most sig- 
nificant effects of inhomogeneity may be taken into account using the model of [18] with a 
mean velocity, density, or any other parameter which varies over time [20, 21]. Solving 
Eq. (18) for Pt(r), the expression for ~(x) may be written in the form 

u '2 (x_____)_) _ 1 i P* (r) dr, ( 21) 
(x) = .,~.(o). u'~ (o---~- b 
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where the relation between the coordinate and the time is 

dx 
d l - -  (22) 

u (x) 

In determining the proportion of components mixed to the molecular level ~(x), it is 
necessary to use the DFPD of the concentration field. As a rule, in calculating the DFPD, 
the presence of the spectrum PtC(r) is not taken into account. The state of the concentra- 
tion field in this respect is taken into account in terms of the mean length scale or the 
mean dissipation rate of the intensity of the concentration pulsations. However, if the 
multiplicity of scales of the mixing process is disregarded, perceptible errors may result 
[22]. The equation for a single-point DFPD of the concentration [23] in the case of an iso- 
tropic single-scale pulsational field may be reduced to the form [24] 

Of,(c', r) 3X d [c'ft (c', r ) ] .  (23)  
Ot r ~ Oc' 

A c l o s e d  e q u a t i o n  of  a n a l o g o u s  form was o b t a i n e d  in  [25] by t h e  method of  t h e  l i n e a r  mean- 
squa r e  a p p r o x i m a t i o n  (LSME). The s o l u t i o n  of  Eq. (23) t a k e s  t h e  form 

[t (c') = e az~/r'fo (c'e axt/r~). (24) 

The f u n c t i o n  i n  Eq. ( 24 )  i s  a n o n r e a l i s t i c  model  o f  t u r b u l e n t  m i x i n g ,  s i n c e  a t  any t i m e  i n  
depends on the form of the initial distribution f0, which contradicts experience. This re- 
veals a serious deficiency of the LSME method: It incorrectly describes small-scale mixing. 
Taking into account that the mixing process has a multiplicity of scales corrects this sig- 
nificant deficiency. The expression for ft(c') taking account of the correlation of the 
dynamics of the intensity distribution of the concentration pulsations with the process of 
molecular diffusion is as follows 

ft (c') = i eaXt/'=f~ (c'eaXt/r=)R~ (r)dr. ( 25 ) 
0 

Here the solution in Eq. (24) is averaged over the probability distribution of the scales 
RtC(r). Equation (25), written in terms of the spectrum PtC(r), takes the form 

i egXt/r~f~ (c'e3Xt/r~) P~ (r) dr, h (c') (26)  
Xo 

where ~0 is the scale characterizing the dimension of the flow region in which the compon- 
ents are mixed to the molecular level. The scale %0 at each instant of time is less than 
the microscale of turbulence for the concentration field and is found from the integral 
equation 

i e6X~/r2~ c , , , .  ~', tr) ar = 1. 
~o (27) 

The initial DFPD of the concentration when only pure components are present in the flow 
is usually chosen in the form of a sum of two 8 functions with some weighting factors (for 
example, n = 6 G) 

n ~ ( c - - c O +  1 6 ( c - - c ~ ) .  
fo (c) = 1-k-----~ 1 +  n ( 2 8 )  

The mean concentration is constant for the whole flow 

c= /'/.C 1 - ~  C= 

7 = i" fo (c) de - 1 + n ( 2 9 )  
Cl 

Introducing the variable c' = c - E, an expression is obtained for the DFPD of the fluctua- 
tional field c' initially 

[ ] i c ] 
- -  n--i--6 c' § c,--c_..__~ + 1 ~ n(c~--cO (30) 

to (d)  1 q-- n 1 -{-n 1 + n -1 -~  7 " 
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The proportion of components @(x) mixed to the molecular level, expressed in terms of the 
DFPD of the concentration pulsations, is determined as follows 

c2--"~ - - A  

q ~ ( x ) = l - -  +A - - - -1 - -  c~-c (31) 
c~--c 0 ' 

.f C'fo 
0 c,--~ 

where A > 0, A + 0. If the function P0C(r) is not normalized to unity initially (~0 = 0, 
i.e., only pure components are present in the flow), then Eq. (31) may be reduced to the 
following simple form, taking account of Eq. (26) and (30) 

cp (x) --- 1 - -  i e3Xt/r'P~ (r) dr. ( 3 2 )  
;% 

The relations obtained for ~0(x) and ~(x) determine the intensity of the turbulent 
velocity field and the mixing of the flow to the molecular level in the gas-dynamic and 
kinetic equations. The degree of mixing of the laser-active components in the supersonic 
turbulent flow of a CO 2 laser with mixing was taken into account in [26] using the DFPD 
of the concentration. However, the parameter characterizing the degree of mixing was deter- 
mined on the basis of information on the single-point moments of the concentration field 
and taken into account only in the kinetic equations, which were solved separately from the 
one-dimensional gas-dynamic equations. The approach described in the present work allows 
the fact that the turbulent velocity and concentration fields have multiple scales to a 
significant extent to be taken into account, as well as their influence on the mean gas- 
dynamic and relaxational characteristics of the flow. 

On the basis of the above approach, the characteristics of vibrationally-nonequilibrium 
CO 2 and N 2 flows mixing behind the nozzle array are calculated. The initial parameters of 
the flows before mixing are as follows: rl ~ = 0.171 cm; r2 ~ = 0.372 cm; ul ~ = 619 m/sec; 
u2 ~ = 1880 m/sec; TI = 64 K; T 2 = 355 K; p = 1040 Pa. The system in Eqs. (18)-(19) is 
solved with initial conditions for P0(r) and P0C(r) taken from [18] and constants y = 0.07, 

= 0.01. The dispersion of the initial distributions P0(r) and P0C(r) is o u = 0.5, ~c = 
1.5, respectively. The turbulent Reynolds number, calculated from the scale s = 4rl~176 

(rl ~ + r2 ~ = 0.476 cm, is R E = ~u"~(0) s = 3095. The functions~~ and ~(x) obtained 
from Eqs. (32) and (21), taking account of Eq. (22), are substituted into Eqs. (11)-(17). 
Thus, they are taken into account as external information in the relaxational equations 
and the equations for the mean gas-dynamic quantities. The results of calculating the mean 
(in the direction of the beam) amplification factor E and comparison with experimental re- 
suits [27] (Fig. 3a) reveal not only qualitative but good quantitative agreement, which 
confirms the correctness of using the given approach to describe the turbulent mixing of 
relaxing gases behind the array of small-scale nozzles. The variation in ~ and ~ with re- 
spect to the coordinate x is shown in Fig. 3b. It is evident that, when the proportion of 
mixed components reaches the level @ ~ 0.4, the intensity of pulsations of the turbulent 
velocity field is ~ ~ 0.i and further mixing is determined basically by the slow process 
of laminar diffusion, Small values of 7 and ~ in comparison with subsonic flow behind a 
small-scale array with large Reynolds numbers [18] indicate fast laminarization of the super- 
sonic flow. 

Note that, in the present work, the influence of variability of the mean density and 
the density pulsations on the gas-dynamic and turbulent characteristics of the flow was 
ignored. Taking this influence into account would evidently allow more accurate values of 

and ~ to be determined. 

NOTATION 

Q, density; u, velocity; T, temperature; P, pressure; H, specific enthalpy; ~, molecu- 
lar weight; ej, mean number of vibrational quanta of j-th vibrational mode; gk, molar con- 
centration of-k-th type of molecules; Gi, mass flow rate of i-th component in a state of 
mixing to the molecular level; Gi ~ total mass flow rate of i-th component; Nj, number of 
nonequilibrium vibrational modes in mixture; gj, 8j, multiplicity of degeneracy and charac- 
teristic vibrational temperature of the given vibrational level of the j-th mode; E, mean 
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(in the direction of the beam) amplification factor of medium; Pt(r), PtC(r), distribution 
of intensity of pulsations of the turbulent velocity and concentration field, respectively, 
with respect to the spectrum of scales of length r; ~, X, kinematic viscosity and diffusion 
coefficient; L m, U, T m, characteristic values of the length, velocity, and time scales, re- 
spectively, of the mean motion; r0, ~, characteristic values of length and time scales, re- 
spectively, of small-scale turbuelnt motion;x, longitudinal coordinate; t, time; ri ~ ini- 
tial linear dimension of jet of i-th component obtained after calculating the shock-wave 
interaction and additional expansion of the flows close to the plane of the nozzle grid; c, 
E, c', instantaneous, mean, and pulsational value of the absolute concentration of the 
component in the flow, respectively; ft(c), density function of probability distribution of 
the concentration field; ~, proportion of components mixed to molecular level; ~,intensity 
of turbulent velocity pulsations, normalized to the initial value u'2(0). Indices: i = 
i, 2, number of component being mixed; j = i, 2 ..... Nj, number of nonequilibrium vibra- 
tional mode; L, N, linear and nonlinear molecules, respectively; superscript 0, initial val- 
ue of parameter at the array plane. 
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VELOCITY AND TEMPERATURE FLUCTUATIONS IN A TURBULENT SUSPENSION 

I. V. Derevich UDC 532.529:532.517.4 

The effect of the particles of a suspension on the spectrum of velocity and 
temperature fluctuations is studied on the basis of the equations for the 
second two-point moments. 

The effect of the particles on the spectrum of velocity and temperature fluctuations 
of a gas with particles arises in connection with the propagation of acoustic, optical, 
and radio waves in a dusty medium. The distortion of the spectrum of fluctuations of the 
gas component due to the particles has not been studied sufficiently either theoretically 
or experimentally. There is no data in the literature on the spectrum of temperature 
fluctuations of a gas with particles and there is no common view on the nature and degree 
of the distortion of the distribution of fluctuation energy of the gas among vortices of 
different sizes in a suspension. For example, it is assumed in [I] that the addition of 
particles into a turbulent fluid does not change theintensity of velocity fluctuations of 
power-consuming vortices but leads to a suppression of small-scale vortices whose charac- 
teristic sizes are smaller than the diameter of the particles suspended in the fluid. The 
model of [i] was applied in [2, 3] to the hydrodynamics and heat transfer of the flow of a 
suspension in a pipe. In [4] the spectrum of velocity fluctuations of the gas component 
of a suspension was studied theoretically and it was found that the intensity of turbulent 
velocity fluctuations increases in the inertial part of the spectrum and decreases in the 
region of viscous dissipation. But the theoretical picture of the distortion of the spec- 
trum of velocity fluctuations of the gas in the presence of particles does not agree with 
the experimental data of [5, 6]. In these papers it was established that small particles 
lead to a significant decrease in the intensity of turbulent velocity fluctuations of the 
gas in energy-containing vortices and in the inertial region of the spectrum, while in the 
viscous dissipation region fluctuations increase. 

In the present paper we consider a fluid with a small volume concentration of impurity 
particles. On the basis of the equations for the second two-point correlations of the veloc- 
ity and temperature fluctuations in the discrete and fluid phases we obtain expressions for 
the spectral functions describing the intensity distribution of velocity and temperature 
fluctuations of the gas phase as functions of the wave number in the inertial and convective 
regions of the spectrum. We study the effect of the ratio of the heat capacities of the 
particles and the gas and also the molecular Prandtl number of the gas on the spectrum of 
temperature fluctuations of a gas with particles. 

The system of equations for the second two-point correlations of the velocity fluctua- 
tions for the fluid and discrete phases has the following form, assuming homogeneous isotro- 
pic turbulence [4] 

aE. (k,t) --F~,(k, t)=--2,~k2E.(k, t) - - 2 -  ~ [E.(k, t ) 'E, ,v(k ,  01, 
at xu 

( l )  

G. M. Krzhizhanovskii Energy Institute, Moscow. Translated from Inzhenerno-Fizicheskii 
Zhurnal, Vol. 55, No. i, pp. 26-33, July, 1988. Original article submitted March ii, 1987. 
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